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The proportionality between the expectation values (p") and the Slater effective parameters to the same 
power, t~", h ave been used with the method of Eisenberger & M arra [ Phys. R ev. Lett. ( 1971), 27, 1413-1416 ] 
in order to obtain localized expectation values of the linear momentum operator. A compilation of (p2>/2 
and of (p-~)/2 is presented for a set of AB and AH bonds, H is the hydrogen atom, while A and B vary from 
lithium to fluorine. A correction introducing the internuclear distances RAs is proposed, which increases the 
accuracy of the results. For a given molecule it is sufficient to sum the bond terms with or without the R 
correction, using the Lewis localization technique. This method is useful for large molecules. 

Introduction 

In recent years, a large amount of work has been done 
on the Compton scattering produced by X-rays, y-rays 
and fast electrons. The theoretical work depends 
directly on knowledge of the wave function of the 
scatterer. For the present state of experimental and 
theoretical results see Williams (1977), in which the 
references alphabetically listed from Eisenberger & 
Platzman (1970) to Whangbo, Smith & Von Niessen 
(1974) and the review article by Epstein (1973a) are 
included. 

An algebraic method is proposed to calculate the 
expectation values of the linear momentum operator in 
the form of localized values in order to see if these are 
transferable; they can be useful for large molecules 
when there are no wave functions. 

In this article, the starting points are the (p" )  values 
calculated from the BAS (best atomic set) and RHF 
(restricted Hartree-Fock) wave functions, particularly 
those calculated by Ransil, (1960), Cade & Huo (1973, 
1975), Cade & Wahl (1974), Moccia (1964a,b,c), 
Epstein (1970, 1973b), Whangbo, Smith & Von 
Niessen (1974), Smith & Whangbo (1974), Alhenius & 
Lindner (1975) and Kaljser & Lindner (1975). 

Method of calculation 

The usual way of calculating the expectation values of 
the linear momentum operator (p" )  is to start from the 
wave function in position space which by Fourier trans- 
formation gives the corresponding wave function in 
momentum space 

2,(p) = (21t) -3/2 f q/(r) exp ( - i p . r )d r  (1) 

where ~u(r) is the usual Slater-type orbital 

~t(r) = N 1/2 r ''-~ exp ( - a t )  Yt.,,(O, ~). (2) 

In the impulse approximation and for an isotropic 
system the expectation values take the form 

(pn> = f l (p)  p"dp, (3) 

where I(p)  the radial momentum density is 

I ( p ) =  .fzX(p)z(p)p2sin Op dOpd~Op, (4) 

the Compton profile is 

J(q) = ½ f p-~ l(p) dp (5) 
q 

with 
cl 

q - - - O ~ 2 ,  (6) 
22 i sin 

c is the velocity of the light, 2 i is the wavelength of the 
incident beam, l is measured from the centre of the 
Compton profile and 0 is the scattering angle. It also 
appears that 

( p - ' )  = 2J(O). (7) 

For these relations see Eisenberger & Platzman (1970) 
and Kilby (1965). 

The results obtained by this procedure will be 
compared with those of the proposed method. This 
method is an extension of the proportionality between 
the (p"> values and the effective parameters of the 
Slater-type orbital, of the form given by (2), which has 
been demonstrated by Epstein & Roux (1974) in the 
case of atoms as 

<P"> c. (8) 
(I n , I C I ,  m ' 

where C is nearly constant and n', l, m are the usual 
quantum numbers. 
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Table 1. Comparison of  kinetic energies (atomic units) 

Molecule BAS~ BAS'~ BAS RHF~ RHF'~ RHF 

NO 128.247 128.250 129-060 129.073 129.146 
BF 123-186 123-542 123.164 123.263 123.712 124.116 
CO 111.777 111.948 111.352 112.337 112.543 112.642 
NF 153.118 153.198 153-306 153.415 153.831 
HCN 91.363 91.733 91.327 92-610 92.562 92- 836 
FC N 189- 838 190- 412 190.903 191.083 191.627 ( - E )  
NNO 181.553 181.561 181.560 183.389 183.408 183.563 ( - E )  
FCCH 17.472 174.725 174.910 174-951 175.616 ( - E )  
NCCCH 166-369 166.741 168.269 167-962 168.487 ( -E )  

Notes 
BAS~: BAS approximation with equation (10). 
BAS~: BAS approximation with equation (9). 
BAS: BAS approximation, direct calculations (Epstein, unpublished results). 
RHF~: RHF approximation with equation (10). 
RHF'~: RHF approximation with equation (9). 
RHF: RHF approximation, direct calculations with wave functions from Cade & Wahl (1974), Cade & Huo (1973, 1975) and Yoshimine 
& McLean (1967). 
( -E )  indicates the use of Virial theorem to obtain the kinetic energies. 

In the case of bonds, two relations have been 
proposed in order to converge to the atomic value when 
the internuclear distance R becomes zero: 

and 

(p") 
- F I (S ,S ' , S" . . . )  (9) 

(In +fin 

(p" )  
- F 2 ( S , S ' , S " . . . ) .  (10) (,,+ #)" 

Whatever the wave functions used to calculate the (p" )  
values of the numerators of these two equations, the 
values of the denominators remain the same Slater 
atomic parameters: ,~ is the STO centred on atom A, fl 
on atom B. They are the same as those used by Ransil 
(1960). The Eisenberger & Marra (1971) method is 
then applied to calculate the (p" )  for (9) and (10). 
Their method requires the total (P")r  calculated from 
wave functions of various accuracies from which the Is 
atomic or inner-shell contributions are subtracted. The 
remaining parts, (P")R, can be divided between the 
bond and lone-pair contributions. This can be done 
with the following system of equations: 

(p"~)R'= a(pn)LpA + b(pn)LeS + c(p") ,  s 

(1¢'2) R' =a'(P")LpA + b'(p")Len + c'(pn)An (11) 

(p'J)R' =a"(pn)LeA + b"(p")Len + C"(p")An; 

the (/~M)R' are the (P")R, of molecules 1, 2, 3; a, a ' ,  a", 
b, b', b", are the number of lone pairs on A and B 
atoms, respectively; c, c', c", the number of bonds be- 
tween A and B; (pn)LPA,LPB the (p" )  value for the AB 
bond. 

The F i and F 2 functions vary with the types of atoms 
which form the bond, therefore they are also functions 
of the nuclear charges. As in the case of atoms, straight 

lines are good approximations of Ft and F 2 functions 
plotted versus (Z A + ZB) , so only two values are 
necessary for each value of n and each type of bond 
and lone pair. 

Results and discussion 

Examples of kinetic energies and (p-~)  values obtained 
by the proposed method are collected in Tables 1 and 2 
and compared with the results obtained by direct cal- 
culations. It can be seen that in the case of the kinetic 
energies, we can get a good approximation to the direct 
results with the use of the RHF'  t method (use has been 
made in some cases of the Virial theorem to obtain the 
kinetic energies). In the case of the (p-Z) values, the 
results suggest the use of the BAS'I approximation. 

The results show a crude character of transferability 
but they are strongly influenced by several factors, par- 
ticularly by the choice of Is contributions and the inter- 
nuclear distances. Alhenius & Lindner (1975) have dis- 
cussed these two effects in the case of the kinetic 
energies; in the case of ( p - l ) ,  the effect of the Is con- 
tribution is very important as it is used in the 
comparison of the theoretical and experimental values. 
The (p-~)  are also largely modified by the internuclear 
distance. This effect has been treated as follows: As was 
shown by Eisenberger & Marra (1971) the (P")AB are 
inversely proportional to the internuclear distances RAn, 
particularly 

(P2)c-c (P2L=~ 
> 

2 2 
this implies that 

( P - ' L - ~  (P-2L--c < 
2 2 
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Table 2. Comparison of (p- l)r /2 values (atomic units) 

Molecule BAS~ BAS', BAS RHF~ RHF', RHF 

CH 3.16 3.16 3.38 3.39 3.4393367 
FH 3.12 3.13 3.1488 3.23 3.22 3.234261 
C 2 5.29 5.24 5.2016 5.39 5.34 
CO 5.08 5.14 5. 1482 5.29 5.35 5.321130 
NF 5.14 5.15 5.40 5.42 
BF 4.98 5.10 5.1604 5.20 5.32 5.416703 
N 2 5.1312 5.344320 
CH 4 5.08 5.09 5.036 5.70 5.66 

Notes 

CI DZ 

3.46 (1) 
3.19 (2) 

5.16 5-17(3) 
5.09 

4.97 
5.08 (4) 

BAS~, BAS'~, BAS, RHF[, RHF', RHF, have the same meaning as in Table 1. 
CI: valence electron configuration interaction wave function results (Kaijser & Lindner, 1975). 
DZ: double zeta wave function results (Whangbo, Smith, & Von Niessen, 1974). 
EXP: experimental vaiues, Eisenberger & Reed (1972) for N2, and Whangbo, Smith & Von Niessen (1974) for CH 4. 

EXP 

5-27 
4-985 

Table 3. Influence of the choice of ls contribution and RA8 upon (p-1)7./2 (atomic units) 

RHF' I 
BAS'~ BAS~ 1,4-Dioxane RHF~ LMO E LMO S & W EXP 

20-67 20.59 22.02 22-08 
20.52 20.42 21-85 21.79 19.59 19.73 19-39 

CMO Is 
LMO Is 

R corrected and 
CMO Is 
LMO Is 

19.41 19-33 20-72 20-67 
19.23 19.16 20-54 20.50 19-59 19-73 19.39 

Hexane 

26-48 26.86 

26- 30 26-57 23.74 23- 23 22.34 
22.84 

25-32 25-66 
22.34 

25-16 25.48 23-74 23.23 
22-84 

CMO Is 24.66 27.78 

LMO Is 24.42 24.60 

R corrected and 
CMO ls 23.50 23.58 

LMO Is 23-31 23.40 

Notes 
BAS~, BAS~, RHF'~, RHF~, have the same meaning as in Tables 1 and 2. 
LMO E: localized molecular orbital values (Epstein, 1970). 
LMO S & W: localized molecular orbitals (Smith & Whangbo, 1974). 
C MO Is: canonical I s contribution (the canonical orbitals have the property of being eigenfunctions of the Fock operator). 
LMO Is: localized canonical orbital Is contributions. 
R corrected: value multiplied by the ratio of internuclear distances. 
EXP: experimental values deduced from various authors (Williams, 1977). 

• able 4. Influence of R correction on the kinetic 
energies (atomic units) 

R H F 'j Direct 
Molecule RHF'~ R corrected calculation 

CzH 4 77.458 77.906 78.015 ( - E )  
C2H 6 78.4711 79.149 79.204 ( - E )  
NC~H 167.96 168.000 168-4868 ( - E )  

Notes 
RHF'~: RHF approximation with equation (9). 
RHF]: R corrected: RHF', values multiplied by the ratio of inter- 
nuclear distances. 
Direct calculation: RHF direct calculation of kinetic energies with 
the Virial theorem. 

We have applied these crude corrections, by multi- 
plying the obtained expectation values by the correct 
ratio of the internuclear distances. The results are given 
in Table 3 as well as the Is contribution for the case of 
(p-~)r/2, and in the case of kinetic energies in Table 4 
they are compared for the first two molecules with the 
direct calculations of Smith & Whangbo (1974) with 
the DZ approximation and for the third molecule with 
the calculations of Yoshimine & McLean (1967) with 
the near-Fock approximation. 

It is evident that the R correction increases the 
accuracy of the calculated values. From all these results 
we suggest the use of the values (p-~)~B/2 and 
(p2)AJ2 taken from Table 5 with or without R 
correction. 
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Table 5. (p-I~AB/2, (p2~An/2 and RAn (atomic units) 

All quantities are given for one electron and for the indicated inter- 

Bond 

LiH 
BeH 
BH 
CH 
NH 
OH 
FH 
LiLi 
BeBe 
BB 
CC 
NN 
OO 
FF 
BF 
CN 
CO 
CF 
NO 
NF 

Lone pair 
B 
C 
N 
O 
F 

Is 
Li 
Be 
B 
C 
N 
O 
F 

Notes 

nuclear distances. 

(p-I)AJ2 (p2)AJ2 RAn 

0-410 3.015 
0-537 2-538 

0.704 0-719 2-336 
0.599 0.959 2- 124 
0-518 1.2649 1-9614 
0.453 1-6356 1.8321 
0.404 2.0825 1-7328 
1-9075 0-2391 5-051 
I. 182 0-5275 4.000 
0-830 0-9190 3.005 
0.606 1.4048 2-3481 
0-459 2-0190 2-068 
0-345 2-6732 2-2820 
0.272 3-4205 2-6800 
0-515 2.2223 2.3910 
0-530 1.7041 2-2140 
0-471 2-0556 2-1320 
0.425 2-441 2.402 
0-406 2-3343 2-1747 
0.351 2-7251 2.4890 

0.686 0.933 
0-553 1-4365 
0.466 2-040 
0-404 2.7439 
0-356 3.5152 

BAS CMO LMO 
0.3255 0.3266 0.2986 3.6097 
0-2345 0-2378 0-2150 6-78595 
0.1848 0.1830 0.1676 10-926130 
0-1523 O. 1537 0-1373 16-04189 
0.1295 0-1305 0.1154 22.12790 
0.1130 0.1135 0.991 29.19514 
0-097 0.1005 0-0869 37.22895 

CMO Is: canonical Is contribution as in Table 3. 
LMO Is: the corresponding localized values as in Table 3. 
BAS are the Is contribution obtained by Epstein (1970). 

C o n c l u s i o n  

Despite the simplicity of  the method,  we obtain 
satisfactory results assuming a complete  transferability 

of  the localized values and improved results using the 
corrected transferability, a l though there are still dif- 
ferences to be corrected.  A particular advantage  of the 
method  is the possibility of  starting with (pn~r  derived 
from very elaborate  wave functions. Unfor tunately ,  
wave functions of  high accuracy  are not  numerous  and 
it is difficult to obtain homogeneous  starting values. 
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